Option Explicit
Private Sub Form_DblClick()
Dim x As Long, y As Long, c As Long
For y = 1 To 100
For x = 1 To 100
'1..255: m=128, 3s=127, s=42
c = Norm1 * 42 + 127
If c < 0 Then c = 0: If c > 255 Then c = 255
PSet (x, y), RGB(c, c, c)
Next
Next
For y = 1 To 100
For x = 101 To 200
c = Norm2 * 42 + 127
If c < 0 Then c = 0: If c > 255 Then c = 255
PSet (x, y), RGB(c, c, c)
Next
Next
For y = 101 To 200
For x = 1 To 100
c = Norm3 * 42 + 127
If c < 0 Then c = 0: If c > 255 Then c = 255
PSet (x, y), RGB(c, c, c)
Next
Next
For y = 101 To 200
For x = 101 To 200
c = Norm4 * 42 + 127
If c < 0 Then c = 0: If c > 255 Then c = 255
PSet (x, y), RGB(c, c, c)
Next
Next
For y = 1 To 100
For x = 201 To 300
c = Rnd * 256
PSet (x, y), RGB(c, c, c)
Next
Next
For y = 101 To 200
For x = 201 To 300
Dim r As Long, g As Long, b As Long
r = Norm2 * 42 + 127
If r < 0 Then r = 0: If r > 255 Then r = 255
g = Norm3 * 42 + 127
If g < 0 Then g = 0: If g > 255 Then g = 255
b = Norm4 * 42 + 127
If b < 0 Then b = 0: If b > 255 Then b = 255
PSet (x, y), RGB(r, g, b)
Next
Next
End Sub
Private Sub Form_Load()
Randomize
ScaleMode = vbPixels
Exit Sub
Dim i As Long, Start As Double
Start = Timer
For i = 1 To 1000000
Norm1
Next
Debug.Print Timer - Start
Start = Timer
For i = 1 To 1000000
Norm2
Next
Debug.Print Timer - Start
Start = Timer
For i = 1 To 1000000
Norm3
Next
Debug.Print Timer - Start
Start = Timer
For i = 1 To 1000000
Norm4
Next
Debug.Print Timer - Start
End Sub
''from comp.lang.c FAQ, question 13.20 (http://c-faq.com/lib/gaussian.html)
'Central Limit Theorem
Function Norm1() As Double
Norm1 = Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd + Rnd - 6
End Function
'Abramowitz, Stegun, Box, Muller
Function Norm2() As Double
Const PI = 3.14159265358979
Static U As Double, V As Double
Static phase As Boolean
If phase Then
Norm2 = U * Cos(V)
Else
U = Sqr(-2 * Log((Rnd + 0.0000001) / 1.0000001))
V = 2 * PI * Rnd
Norm2 = U * Sin(V)
End If
phase = Not phase
End Function
'Knuth, 3.4.1.C.1
Function Norm3() As Double
Static V1 As Double, V2 As Double, S As Double
Static phase As Boolean
If phase Then
Norm3 = V2 * S
Else
Do
V1 = 2 * Rnd - 1
V2 = 2 * Rnd - 1
S = V1 * V1 + V2 * V2
Loop Until (S > 0) And (S < 1)
S = Sqr(-2 * Log(S) / S)
Norm3 = V1 * S
End If
phase = Not phase
End Function
'http://www.enlight.ru/demo/faq/smth.phtml?query=alg_rnd
Function Norm4() As Double
Const C1 = 0.029899776, C2 = 0.008355968, C3 = 0.076542912, C4 = 0.252408784, C5 = 3.949846138
Dim S As Double: S = Norm1 / 4
Dim r As Double: r = S * S
Norm4 = ((((C1 * r + C2) * r + C3) * r + C4) * r + C5) * S
End Function
uhm писал(а):1ый метод - лажа полная. ЦПТ говорит, вообще-то, о пределе при n стремящемся к бесконечности, а не к 12
uhm писал(а):Про остальные - интересно было бы прочитать теоретическую основу.
uhm писал(а):(берется обратная функция плотности нормального распределения от равномерно распределенной случайной величины).
uhm писал(а):12 ближе к 1, чем к +бесконечности
uhm писал(а):А самый прозрачный метод, на мой взгляд, ты пропустил:
http://c-faq.com/lib/gaussrand.luben.html
Norm1: 1,938
Mean: -0,0004
Variance: 1,0006
Skewness: 0,0059
Kurtosis: -0,0848
Norm2: 1,1406
Mean: -0,0001
Variance: 0,9989
Skewness: 0,0002
Kurtosis: -0,0081
Norm3: 1,3288
Mean: 0
Variance: 1,0016
Skewness: 0,0014
Kurtosis: 0,0111
Norm4: 2,532
Mean: -0,0007
Variance: 1,0004
Skewness: 0,0005
Kurtosis: 0,0266
uhm писал(а):Ок, значит, его и будем использовать
Ты эксцесс считал с вычитанием 3?
ξ+η+ζ = 1000
0 = D(ξ+η+ζ) = 3D + 6cov
cov = -½D; r = -½
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9