
1

Sprite2D SDK for FBSL v3

Introduction

The Ultimate Sprite2D Software Renderer (hereinafter referred to as “the

USSR”) is intended to create windowed 2D applications suitable for use on

Windows XP/Vista/7/8 platforms. As of the date of this writing, the USSR

comprises two separate files, CSprite2D.inc and Sprite2DLib.inc, to be

included in the user’s main script file.

The CSprite2D class loads and stores a colorful 24- or 32-bpp two-

dimensional image and features a rich set of properties and methods to

transform the image and display it on an FBSL form or any Windows control

that has a device context to render to. For brevity, we will hereinafter refer

to an instance of the CSprite2D class as “a sprite”.

The Sprite2DLib library file is an assortment of FBSL v3 Dynamic Assembler

routines compilable into native executable machine code at main script load

time. The most time-critical sections of assembly code are written using the

MMX instruction set which makes the code extremely fast though narrowing

the applicability of USSR down to Intel Pentium MMX+ architectures. The

sprites access the routines on their own through their private and public

members to perform various transformations of the images loaded in them.

However, all the routines are also directly accessible from the main script

and its includes thus allowing for greater flexibility of the user’s source code.

The Sprite2DLib will be hereinafter referred to as “the library”.

The USSR is not based on OpenGL or DirectX. Neither does it use any

hardware acceleration specific to respective GPU makes. It makes the

renderer particularly attractive for modern business notebooks which are

built around powerful CPU’s but usually have very weak video cards. The

USSR renders as fast as only the user’s CPU permits allowing, at the same

time, for a wide variety of per-pixel effects normally available on high-end

gaming-style GPU’s only.

2

1. Minimum Deployment

#Uses "@|WIN32"

#Option Strict

#DllDeclare ("BeginPaint", "EndPaint", "InvalidateRect")

#Include ".\CSprite2D.inc"
#Include ".\Sprite2DLib.inc"

Resize(ME, 0, 0, 640, 480)

Dim %Width, %Height, $PS * 64 ' fake PAINTSTRUCT

Dim SprTest As New CSprite2D ' create new sprite

GetClientRect(ME, 0, 0, Width, Height)
SprTest.Init(Width, Height) ' assign size equal to form’s entire client area
SprTest.ClearBuffer(ARgb(0, 255, 0, 0)) ' fill sprite with red color

Center(ME)

Show(ME)

Begin Events
 Select Case CBMSG

 Case WM_COMMAND ' VK_ESCAPE pressed
 If CBLPARAM = 2 Then
 PostMessage(ME, WM_CLOSE, 0, 0)

 Return 0
 End If

 Case WM_ERASEBKGND ' suppress flicker on form redraw
 Return 1

 Case WM_PAINT
 SprTest.PaintToDevice(BeginPaint(ME, PS))

 EndPaint(ME, PS) ' render sprite onto form
 InvalidateRect(ME, NULL, FALSE) ' initiate next render
 Return 0

 Case WM_CLOSE
 SprTest.Dispose() ' deallocate sprite resources

 End Select
End Events

Copy the above code and paste it into the text editor window. Save the

script as e.g. Test.fbs and run it to see the entire main form painted in red.

3

2. Loading and Saving Images

Another way to initialize a sprite is load an image file into it. Currently,
CSprite2D supports two image file loaders:

 24- (RGB) and alpha-channel 32-bit (RGBA) uncompressed TGA files
through the LoadFromTGA() method

 Any image file formats that the GDI+ library supports on the user’s PC

with an alpha-channel where applicable (e.g. BMP, PNG, TIF, GIF and
JPG) through the LoadFromFile() method

You can change the following two lines in the above script

SprTest.Init(Width, Height) ' assign size equal to form’s entire client area
SprTest.ClearBuffer(ARgb(0, 255, 0, 0)) ' fill sprite with red color

with

SprTest.LoadFromTGA(".\1.tga") ' put 1.tga into main script’s directory

and the main form will now display the TGA picture. When loading an image

file, the sprite readjusts itself automatically to the image size. There’s no
problem if the image is larger than the main form. In this case, only part of

the sprite that fits in the form’s client area will be rendered.

The user can also save sprite images to disk files via the sprite’s
SaveToFile() method. Currently, BMP and PNG formats are supported as well

as the JPG format with a user-defined quality that defaults to 80 per cent. To
enjoy the full range of file save formats, the corresponding file codecs must
be available on the user’s PC.

4

3. Rendering One Sprite into Another One

Rendering one sprite into another one is the main method of game scene
creation in the USSR. The engine implements back buffering whereby all the
scene sprites are first rendered into the common back buffer sprite which, in

its turn, is then transferred into the main form’s device context thus
completely eliminating any visible flicker.

Let’s extend the above sample script in the following way:

#Uses "@|WIN32"

#Option Strict

#DllDeclare ("BeginPaint", "EndPaint", "InvalidateRect")

#Include ".\CSprite2D.inc"

#Include ".\Sprite2DLib.inc"

Resize(ME, 0, 0, 640, 480)

Dim %Width, %Height, $PS * 64 ' fake PAINTSTRUCT

Dim X, Y ' image position on main form
Dim SprBack As New CSprite2D ' create backbuffer sprite

Dim SprTest As New CSprite2D ' create image sprite

GetClientRect(ME, 0, 0, Width, Height)
SprBack.Init(Width, Height) ' assign size equal to form’s entire client area

SprTest.LoadFromTGA(".\1.tga") ' put 1.tga into main script’s directory

Center(ME)

Show(ME)

Begin Events
 Select Case CBMSG

 Case WM_COMMAND ' VK_ESCAPE pressed
 If CBLPARAM = 2 Then

 PostMessage(ME, WM_CLOSE, 0, 0)
 Return 0
 End If

 Case WM_MOUSEMOVE ' image follows mouse
 X = LoWord(CBLPARAM)

 Y = HiWord(CBLPARAM)

5

 Case WM_ERASEBKGND ' suppress flicker on form redraw
 Return 1
 Case WM_PAINT

 Render(BeginPaint(ME, PS))
 EndPaint(ME, PS) ' render sprite onto form

 InvalidateRect(ME, NULL, FALSE) ' initiate next render
 Return 0

 Case WM_CLOSE
 SprBack.Dispose() ' deallocate sprite resources

 SprTest.Dispose() ' ditto
 End Select
End Events

' ---

Sub Render(hDC)
 SprBack.ClearBuffer(ARgb(0, 0, 0, 255))

 SprBack.Draw(SprTest, X, Y)
 SprBack.PaintToDevice(hDC)

End Sub

Here two sprites are created:

 SprBack which is intended for accumulating the overall scene layout

and rendering it onto the main form; and
 SprTest which is used for loading some picture.

On mouse move, SprBack is painted blue and then SprTest is rendered into
SprBack at the current cursor position, and finally, the entire SprBack
bitmap is transferred to the main form’s device context in one swoop.

If 1.tga contains an alpha channel, then it will be rendered correctly
(translucency is fully supported). Whenever 1.tga has no explicit alpha

channel, translucency is also possible through the LoadFromTGA() method’s
optional ColorKey parameter:

SprTest.LoadFromTGA(".\1.tga", ARgba(0, 0, 0, 0))

Provided 1.tga has its background painted in black, the black pixels of the
image will become transparent.

6

As soon as the image is loaded into the sprite, the AddColorKey() method
can be used to add more color keys to the image effectively making more

than one color of the image transparent.

The MulAddS2X() method can be used to change the image brightness and

contrast. A pixel color component from the source is multiplied by the Mul
parameter and the Add value is added to the product. Then 128 is
subtracted from the sum as if Add were in fact a signed number, and finally

the resultant value is multiplied by 2. The value is transferred to the
destination sprite. See Water.fbs for a demonstration of this method:

7

4. Blend Modes

The Draw() method of a sprite features yet one more optional Op parameter
(blend operator) whose acceptable integer values are defined as the

Sprite2D_Op enumeration. The parameter determines which particular
technique of mixing the source and destination sprite colors is going to be

used. There are actually 11 such operator values as described below:

 OpPaint replaces the destination sprite’s entire data including the

alpha channel, with the source sprite’s data.

 OpAlphaTest replaces the destination pixel color with the source pixel
color for all the pixels whose alpha component in the source pixel color

is above the medium of 128. Other pixels do not change their colors.
This blend mode is useful for stencil sprites.

 OpAlphaBlend yields standard alpha blending whereby the resultant

color is the product of linear interpolation between the source and

destination colors by the alpha component of the source.

 OpAdd2D results in a color (including its alpha channel) which is an
arithmetic mean of source and destination colors. This blend mode is

useful for translucent images.

 OpAdd yields a color (including its alpha component) which is an

arithmetic sum of source and destination colors. If the sum exceeds
255, it is clamped to that value. This blend mode is useful for

translucent light-emitting object such as e.g. fire. See Fire'n'Light.fbs
for a use case example:

8

 OpMul yields a resultant color as an arithmetic product of source and

destination colors.

 OpMul2X produces an arithmetic product of source and destination
colors further multiplied by 2 and clamped to 255 if the final product

exceeds that value.

 OpMin normalizes the destination colors to the corresponding

minimum values in the source.

 OpMax is the opposite of OpMin effectively saturating the destination
colors with the corresponding source colors.

 OpBlend implements composite blend modes taking account of the
source sprite’s BlendFactor() value.

 OpDefault is a placeholder which denotes an uninitialized blend mode

of the Op() property.

The MaskDraw() method is an analog to Draw() for operating with additional
bit masks (see Section 7. Bit Masks for fuller description). MaskDraw()

implements full blend mode functionality characteristic of the Draw()
method.

If the blend mode operator is not specified explicitly, the source sprite’s
default operator is used. For example, it will be OpAlphaBlend if the sprite

has been loaded with a 32-bit image, or OpPaint for a text or 24-bit image
sprite, or OpAlphaTest if the image has been loaded with an explicit
ColorKey.

A sprite’s default blend mode operator can be changed, e.g. like this:

SprTest.Init(640, 480, OpAlphaTest)

On executing this command, SprTest will acquire OpAlphaTest as its default

blend mode operator. Alternatively, the Op() property can be used to change
the sprite’s run-time blend mode behavior.

9

5. Texturing

The TileDraw() method enables the user to tile the source sprite image

across a rectangular area of an arbitrary size in the destination sprite. For
example, the following command

SprBack.TileDraw(SprBrick, 0, 0, SprBack.Width(), SprBack.Height(), X, Y)

will cover the entire SprBack with the image of SprBrick. X and Y determine
the horizontal and vertical offsets in the SprBrick sprite, respectively. See

the Fire & Light snapshot above for an example of brick texture tiled across
the wall area in the backbuffer sprite.

6. Draw Area Clipping

On default, the destination sprite’s entire area is accessible for painting or

overlaying with the source sprite image. This behavior can however be
overridden by specifying a rectangular area beyond which graphical output is

inhibited (clipped). For example, the following line:

SprBack.ClipRect(50, 250, 50, 250) ' left/right/top/bottom

will clip the output into SprBack to a square area within the specified

borders. Invalid border values (e.g. Left > Right) will be ignored and
previous borders will be kept instead. On loading an image from the disk file

into the sprite or initializing the sprite via its Init() method, the clipping
rectangle is set to the sprite’s entire area.

10

7. Bit Masks

Alongside Draw(), the MaskDraw() method is yet another technique of

projecting one sprite onto another. But in contrast to Draw(), it operates
with three masks rather than two of them. The third sprite is interpreted as

a bit mask. The syntax of the method is as follows:

Dest.MaskDraw(Src, SrcMask, sX, sY, mX, mY, BitMask, NotMask, Op)

whereby sX, sY is the position to draw the source sprite in the destination

sprite and mX, mY is the position where to overlay the source mask sprite
image on the destination. A color value is taken from the source mask sprite

and compared against the BitMask selector which is an integer value. If at
least one bit in the color value and BitMask is the same, the Src sprite pixel

is drawn in the destination sprite literally, just as it would using simple
Draw().

A typical example would be

Dest.MaskDraw(Src, SrcMask, sX, sY, mX, mY, &H80000000, OpPaint)

whereby the Src sprite is drawn to the Dest sprite as if an OpAlphaTest
operator were specified, except that the alpha channel is taken from the

SrcMask sprite rather than from Src. This method can be used e.g. for
overlaying a light spot on another sprite’s image which has an alpha channel
(the OpMul2X operator is especially useful for light spot blending), all this

being drawn against a distant background which shouldn’t naturally be lit by
the nearby light source.

All the sprites in the USSR are always stored in the 32-bit format, i.e. any

sprite can store up to 32 bit masks. Moreover, the user can select not only
any single one of them but also any number of them and in any

combination. For example, a call to

BitMask(0) BOr BitMask(13) ' similar to FBSL’s “1<<numbits” expression

would select and combine masks 0 and 13. When set to TRUE, boolean

NotMask inverts the mask opacity. This is how an example sprite hosting 32
bit masks may look (see Mask.fbs for a use case implementation):

11

8. Bump Mapping

The USSR implements two methods of per-pixel bump mapping:

 Environment Bump Mapping (EBM) with an infinite distance light
source; and

 Dot Product Bump Mapping (DPBM) with a finite distance light source.

Both methods are intended for surface relief emulation. DrawEBM()

emulates global reflective bump mapping effect while DrawDPBM() emulates
surfaces partially lit by a finite-distance (optionally point-) light source. The
methods have their bitmask counterparts, MaskDrawEBM() and

MaskDrawDPBM(), with essentially the same functionality.

DrawEBM() operates with two source sprites, SrcBump and SrcCol. SrcBump
hosts a bump map (a.k.a. “normal map”) while SrcCol hosts a diffuse map

(a.k.a. “color map”). The bump map’s red color component corresponds to
the X coordinate, the green one, to the Y coordinate. First SrcBump is
sampled for a color and then SrcCol is sampled using the same coordinates

as the former sample. If the optional DestSpace parameter is set to TRUE,
the latter sample will also account for the destination sprite coordinates. See

Water.fbs above for a demonstration of EBM effects, see Dot3Light.fbs for
DPBM.

DrawDPBM() requires the light direction to be specified on the third, Z,
coordinate. The light is directed towards the viewer. Brightness should be

clamped to within [0, 1]. The light vector is normalized and multiplied pixel-
per-pixel (scalar multiplication used) by the source sprite values. The red

color component in the bump map corresponds to the X coordinate, the
green one, to Y, the blue one, to Z. The result is written into all components

of the destination sprite including its alpha channel (OpMul2X adds extra
gloss):

12

By multiplying the DPBM result by the diffuse map color values with the
OpMul or OpMul2X blend mode operators, the user can obtain perfect per-

pixel point lighting effects:

13

9. Text Sprites

Text sprites are a special brand of sprites that can display formatted text. A
text sprite cannot host an additional image but the text can be drawn

transparently, in which case it overlays seamlessly on any desired
background.

The text is entered into the sprite via its LoadText() method. The size of the
sprite is calculated automatically given the length of text string as well as

the metrics of the font chosen to display the text. The user can specify the
following font parameters:

 foreground and background colors (optionally a color key)

 point size
 bold, italic and underline flags
 font family name

The text line may contain optional line breaks in which case the text is

wrapped into a multiline message. The text is always centered within its
sprite both horizontally and vertically. See Font.fbs for an example use case:

14

10. Image Transforms

The USSR implements various image transforms including top-down flipping,
left-right mirroring and 90-degree CW and CCW rotation.

The image can also be rotated at an arbitrary angle using the DrawRotate()

method. The rotation comes in two flavors, ordinary (fast) and anti-aliased
(slow). The method uses bilinear filtering for its anti-aliased rotation mode.

The image can also be resized to fit the given sprite bounds. This can be
achieved by loading one sprite’s image into another sprite with the

LoadFromSprite() method. If the sizes of the source and destination sprites
don’t match, the source image is stretched or shrunk to fit the destination

bounds. While being resized, the image can be optionally bilinearly filtered
for better visual results. See Resize.fbs for an example of the quality of

bilinear filtering:

15

11. Pixel-Perfect Collision Detection

The MaskIntersector() method returns the area of sprite intersection with a
given source sprite by comparing the masks of the two sprites. Based on the

given threshold value entered via the Mask parameter, the masks are
compared against each other pixel-by-pixel yielding pixel perfect results.

Considering a zero return value of the method as “Collision = FALSE” and
any other value as “Collision = TRUE”, the user can introduce a pixel-perfect

sprite collision detection system into his/her application. See
MaskedISect.fbs for a use case of this method:

12. Drawing Primitives

Individual pixels within the sprite image may be freely accessed/colorized

using the GetPixel() and SetPixel() methods.

The DrawLine() method enables the user to draw colorful lines. The optional
DotStep parameter can be modified to draw arbitrarily dotted lines. The
optional IsXor parameter, if set to TRUE, has the same effect as mixing the

colors by “Dest BXor Color” so that if Color = &H808080 then the resultant
destination color will be inverted. In this case, if DrawLine() is used with the

same parameters again, the destination colors are restored exactly to their
original values.

The entire sprite rectangle can be colored using the ClearBuffer() and

MaskClearBuffer() methods. Arbitrarily sized color rectangles can be drawn
using the ClearRect() method.

16

13. Extending Sprite2D Engine Usability

The Water.fbs and Fire'n'Light.fbs scripts mentioned above extend

applicability of the USSR by introducing very simple composite sprite classes
based on the available base CSprite2D class.

Yet another simple sample extends this applicability still further by providing

a CAnime2D class which exemplifies a simple sprite animation facility that
allows for CPU-speed-independent performance of the animated character in

the game scene environment.

Acknowledgements

The Ultimate Sprite2D Software Engine is built around a similar project by

Mikle, found at the Russian VB-oriented site VBStreets.ru.

Another beautiful VB6 masterpiece called “Sunrise” allegedly by the same

very creative and talented person, Mikle, can be found at the DemoScene
board here.

http://bbs.vbstreets.ru/viewtopic.php?p=6660569#p6660569
http://www.pouet.net/prod.php?which=55766
http://www.pouet.net/prod.php?which=55766

